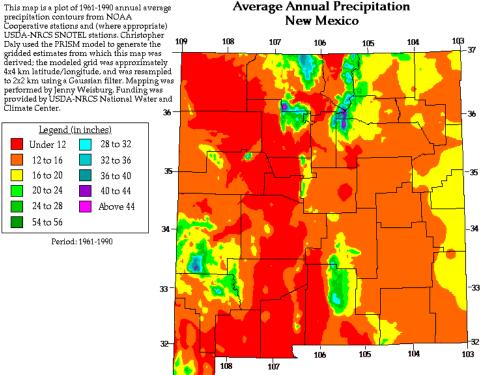
Soil Moisture Sensors for efficient irrigation water management

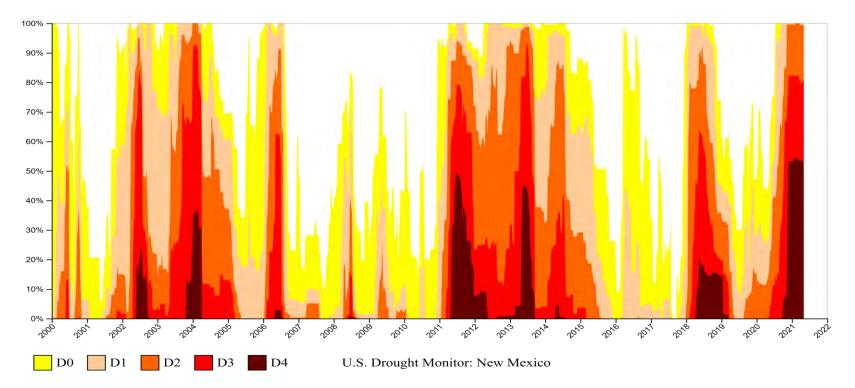
Koffi Djaman, Ph.D

<u>College of Agricultural, Consumer</u> <u>and Environmental Sciences</u>


Plant & Environmental Sciences

BE BOLD. Shape the Future.

Introduction

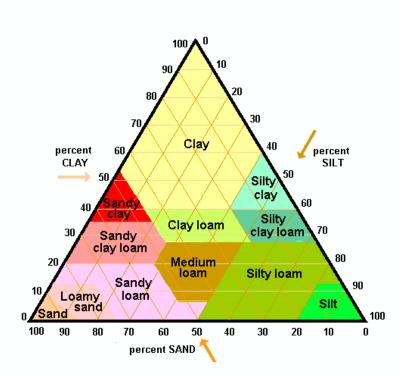

- Climate change
- Reducing available fresh water for crop production
- Produce more food with less water
- Precision agriculture

12/7/97

Drought in New Mexico from 2000–Present

https://www.drought.gov/states/new-mexico


The most intense period of drought occurred the week of January 19, 2021, where D4 affected 54.27% of New Mexico land.


Items needed for soil based water management

- Soil Texture
- Rooting Depth
- MAD % based on crop
- Tension to inches conversion
- System output (in/hr)
 - Where :
 - FC: Field Capacity
 - SWC: Soil Water Content
 - AWC: Available Water Content
 - PWP : Permanent Wilting Point
 - D= soil water deficit
 - MAD= Manageable water depletion
 - dMAD: depth of water to MAD

Soil moisture characteristics of different soil types

Texture Class	Field Capacity		Permanent Wilting Point		Available Water	
	Average (%)	Range (%)	Average (%)	Range (%)	Average (%)	Range (%)
Coarse						
Sand	12	7 - 17	4	2 - 7	8	5 - 11
Loamy sand	14	11 - 19	6	3 - 10	8	6 - 12
Moderately coarse						
Sandy loam	23	18 - 28	10	6 - 16	13	11 - 15
Medium						
Loam	26	20 - 30	12	7 - 16	15	11 - 18
Silt loam	30	22 - 36	15	9 - 21	15	11 - 19
Silt	32	29 - 35	15	12 - 18	17	12 - 20
Moderately fine						
Silty clay loam	34	30 - 37	19	17 - 24	15	12 - 18
Fine						
Silty clay	36	29 - 42	21	14 - 29	15	11 - 19
Clay	36	32 - 39	21	19 - 24	15	10 - 20

Source: Marvin E. Jensen and Richard G. Allen (Editors). 2015. Evaporation, Evapotranspiration, and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practice No. 70 (Second Edition).

Soil moisture measurement methods

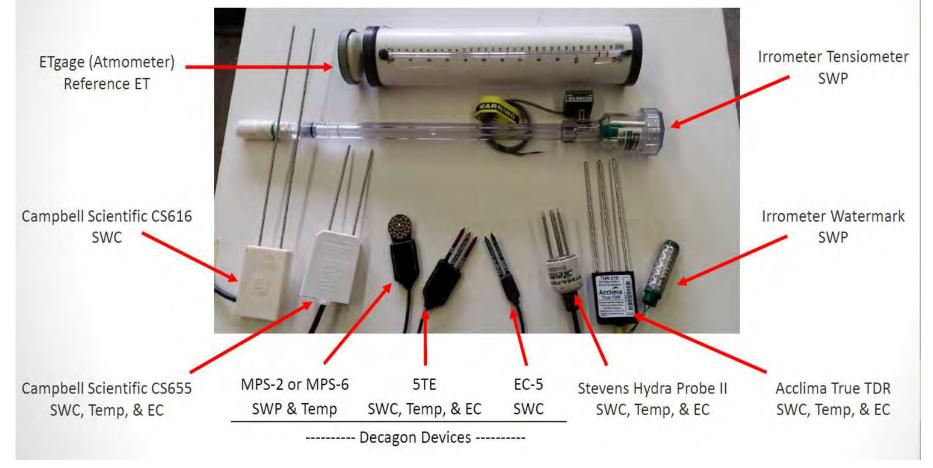
What is the method used this workshop participants?

Hand feel method for quantitative assessment of soil water status

 <u>https://sanangelo.t</u> <u>mu.edu/extension/</u> <u>gronomy/agronom</u> <u>publications/how-</u> <u>to-estimate-soil-</u> <u>moisture-by-feel/</u>

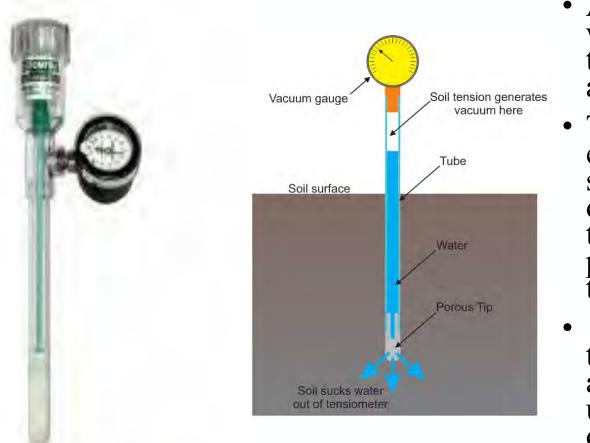
Direct measurement of soil water content

- Labor intensive
- Time consuming
- Non continuous measurements
- Remove known/unknown mass (volume) of soil
- Dry at 221oF until constant weight
- Θ m = $\frac{(Mw Mmd)}{Md}$
- $\Theta v = \Theta m * bulk density$

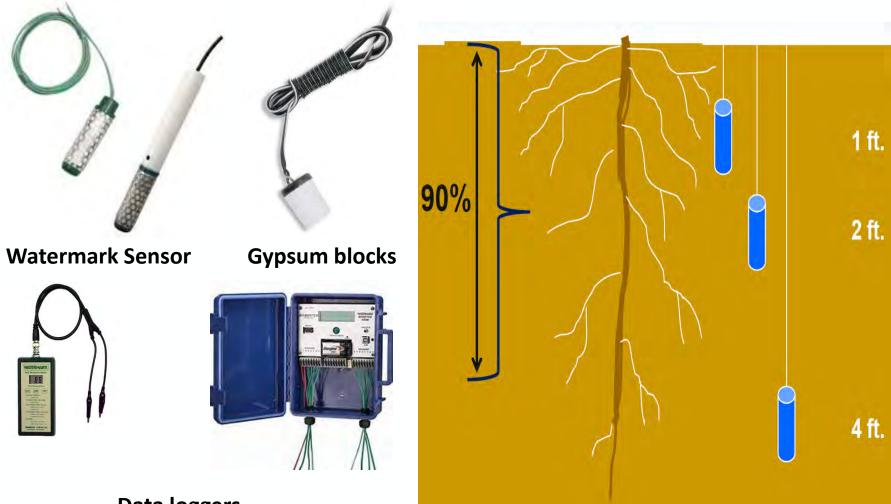


Soil Moisture Sensors & ETgage

Legend:


SWP: Soil Water Potential SWC: Soil Water Content Temp: Soil Temperature EC: Bulk Electrical Conductivity

Source: Rudnick , 2016


Tensiometers

- A water filled tube with a hollow ceramic tipis placed in the soil at a desired depth.
- The sensor will equilibrate with the soil, by pulling water out of the tube while the soil dries and pulling water into the tube as the soil wets.
- The process creates tension within the access tube, measured using a vacuum gauge or pressure transducer.

Electrical resistance sensors:

Data loggers

BE BOLD. Shape the Future.

Watermark in peanut and corn

TDR 100 soil moisture meter

Very easy and simple to use Measure the volumetric water content Good for small garden

BE BOLD. Shape the Future.

Decagon

The TDR-315L, TDR-310S, SDI-12 soil moisture sensors

• Temperature

Campbell Scientific CS655, CS650, cs616 water content reflectometer

- Measure the volumetric water content from 0% to saturation
- Precision: 0.05%

Neutron Probe: 4301/02 SOIL MOISTURE GAUGE

Troxler Sentry 200 AP

- Install probe access tube in the crop row
- Take rearing twice a week

PR2 Soil Moisture Profiling Monitor

- Install probe access tube in the crop row
- Take rearing twice a week or as often depending of the main power availability

BE BOLD. Shape the Future.

John Deere Field connect

- Monitors moisture levels and feeds data to web-based interface
- Support timely irrigation decisions helping to reduce over watering and nutrient leaching
- Alerts you when moisture levels are reaching full or refill points

AQUASPY

Provides continuous soil moisture data at different soil depths as function of the field capacity Access on smart phone and PC

TriSCAN[™] Sensor (Sentek Diviner-2000: Sentek Moisture probe)

Choice of soil moisture sensor: Performance analysis

Lab evaluation

Field evaluation

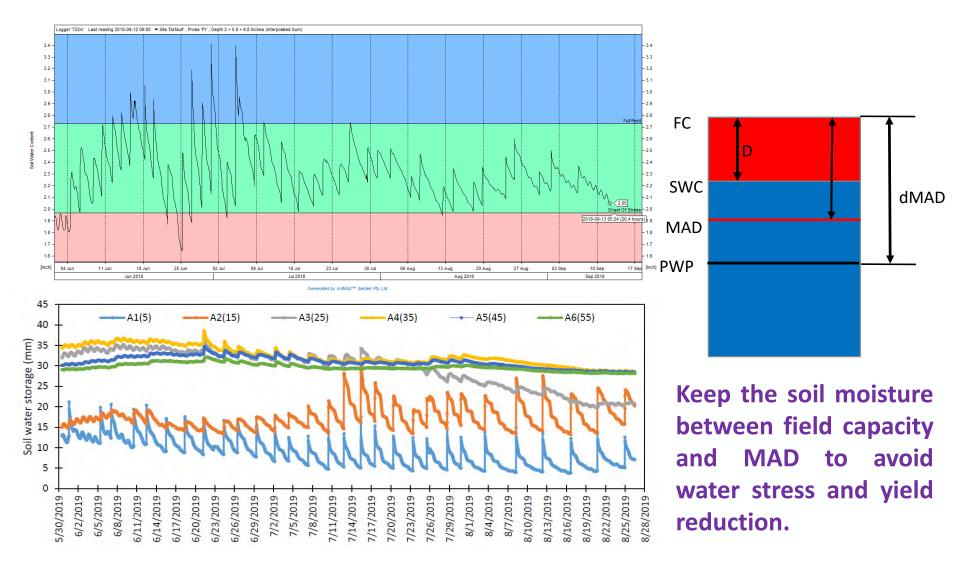
Source: Rudnick et al., 2016

Accuracy of soil moisture sensors

Soil and Climate Related:

- •Range of the measured soil moisture
- •Soil and water salinity
- •Soil content in different ions
- •Soil Temperature
- •Soil texture and structure
- •Soil Layering in different horizons
- •Wetting and Drying Cycles: Hysteresis

Sensor site specific calibration:


Sensor Technology:Sensing Volume (Related to soil)

- •Sensor Spacing (Vertical)
- •Response Time
- •Operational Range and Frequency

- Factory calibration is usually performed under controlled laboratory conditions
- Sensor technologies may respond differently the same
- Spatial and temporal variability of influencing factors, can require separate calibrations
- Soil top layers closer to the surface usually show great fluctuations in soil temperature and water content; which may consequently result in greater error if un-adjusted as compared to lower soil depths

Soil water and irrigation management

Conclusion

Soil moisture sensor adoption is dependent on:

- How much are the sensors?
- Is there annual subscription fee?
- Do I need some one to install and remove the sensors?
- Do I have to purchase the installation kit?
- Can the sensor or data be accessed remotely?
- Is there local product support and or dealer for assistance?
- Can the seasons be used for multiple growing seasons?
- Are there cost share or Leasing opportunities?

What is the best soil moisture sensor? It depends !!!!

Contact Information

Koffi Djaman, PhD

College of Agricultural, Consumer and Environmental Sciences

Plant and Environmental Sciences

https://aces.nmsu.edu/academics/pes/koffi-djaman.html

https://www.researchgate.net/profile/Koffi Djaman

<u>https://scholar.google.com/citations?user=nUldMQkAAAAJ</u> <u>&hl=en</u>

E-mail: kdjaman@nmsu.edu; Phone: 505-960-7757

